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LEITER TO THE EDITOR 

An approach for solving the two-dimensional 
sine-Gordon equation 

D Ouroushev, N Martinov and A Grigorov 
Department of Condensed Matter Physics, Faculty of Physics. University of Sofia, BA 
lvanov 5 ,  Sofia 1126, Bulgaria 

Received 6 March 1991 

Abstract. A new approach for finding analytical Solutions of the two-dimensional sine- 
Gordon equation is presented. The essence of this approach is the established relation 
between the solutions of the one-dimensional wave equation having the form of running 
waves and solutions of the two-dimensional sine-Gordon equation. 

The one-dimensional sineGordon equation 

has arisen in differential geometry [ 11. Now the importance of the sine-Gordon equation 
is due to its physical applications [2] and to the fact that it has soliton solutions [ 1,3,4]. 

The methods already known for solving equation (1) cannot be used for finding a 
solution of the two-dimensional sine-Gordon equation 

a2+ a2g 1 a2+ . 
-+- - - -=s in$  
ax2 ay C' a t2  * = $(x, Y, 1). 

Here we present an approach for finding a solution of equation (2). 
The substitution 

$ = 4 t a n - ' u  = 4 x ,  Y,  t )  (3) 

leads to the following nonlinear partial differential equation for U: 

One possibility for splitting equation (4) into two is the following: 

a20- a2u 1 a2u 

( + ( -2 1 ( --)2 am = 2 . 

Finding a solution of the system (9, (6) provides a sufficient condition for the 
existence of a solution of equation (2). 
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Equation (6) can be split into two equations as follows: 
2 1 d U  (s)2-.(;) = o  

2 

Hence 

J u  1 J u  
-= s- - s = * l  
Jx c Jf 

The system (9). (10) consists of linear partial differential equations. 
Equation (IO) gives 

u = f ( x ,  t)  eEtY. 

Substituting ( 1 1 )  into (9) we obtain 

a j  i af _- -s- -. 
Jx  c Jf 

Hence 

f ( x ,  t )  = f (x - scr). 

Inserting (13) and ( 1 1 )  into (S), we see that (5) is also satisfied 
So for any function f(x-sct) ,  s = *l, the function 

$(x, y, r )=4tan- ' [ f (x-~c t )e" ,~]  

is a solution of equation (2). 

one-dimensional wave equation 
The procedure presented here gives a simple relation between the solutions of the 

J'f 1 J2f 
J x 2  c2 Jf2-  

having the form of running waves f ( x + c f )  or f (x-ct)  and solutions of the two- 
dimensional sine-Gordon equation (2) having the form (14). 

We see from (14) that !he amp!i!ude nf the solution of (2) is a function of the 
velocity c, which is a typical soliton property. 

We are grateful to B Alexandrov for stimulating discussions. 
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