An approach for solving the two-dimensional sine-Gordon equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L527
(http://iopscience.iop.org/0305-4470/24/10/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:23

Please note that terms and conditions apply.

LETTER TO THE EDITOR

An approach for solving the two-dimensional sine-Gordon equation

D Ouroushev, N Martinov and A Grigorov
Department of Condensed Matter Physics, Faculty of Physics, University of Sofia, BA Ivanov 5, Sofia 1126, Bulgaria

Received 6 March 1991

Abstract

A new approach for finding analytical solutions of the two-dimensional sineGordon equation is presented. The essence of this approach is the established relation between the solutions of the one-dimensional wave equation having the form of running waves and solutions of the two-dimensional sine-Gordon equation.

The one-dimensional sine-Gordon equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=\sin \psi \quad \psi=\psi(x, t) \tag{1}
\end{equation*}
$$

has arisen in differential geometry [1]. Now the importance of the sine-Gordon equation is due to its physical applications [2] and to the fact that it has soliton solutions [1, 3, 4].

The methods already known for solving equation (1) cannot be used for finding a solution of the two-dimensional sine-Gordon equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}=\sin \psi \quad \psi=\psi(x, y, t) \tag{2}
\end{equation*}
$$

Here we present an approach for finding a solution of equation (2).
The substitution

$$
\begin{equation*}
\psi=4 \tan ^{-1} \sigma \quad \sigma=\sigma(x, y, t) \tag{3}
\end{equation*}
$$

leads to the following nonlinear partial differential equation for σ :
$\left(1+\sigma^{2}\right)\left[\frac{\partial^{2} \sigma}{\partial x^{2}}+\frac{\partial^{2} \sigma}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \sigma}{\partial t^{2}}\right]-2 \sigma\left[\left(\frac{\partial \sigma}{\partial x}\right)^{2}+\left(\frac{\partial \sigma}{\partial y}\right)^{2}-\frac{1}{c^{2}}\left(\frac{\partial \sigma}{\partial t}\right)^{2}\right]=\sigma-\sigma^{3}$.
One possibility for splitting equation (4) into two is the following:

$$
\begin{align*}
& \frac{\partial^{2} \sigma}{\partial x^{2}}+\frac{\partial^{2} \sigma}{\partial y^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} \sigma}{\partial t^{2}}=\sigma \tag{5}\\
& \left(\frac{\partial \sigma}{\partial x}\right)^{2}+\left(\frac{\partial \sigma}{\partial y}\right)^{2}-\frac{1}{c^{2}}\left(\frac{\partial \sigma}{\partial t}\right)^{2}=\sigma^{2} \tag{6}
\end{align*}
$$

Finding a solution of the system (5), (6) provides a sufficient condition for the existence of a solution of equation (2).

Equation (6) can be split into two equations as follows:

$$
\begin{align*}
& \left(\frac{\partial \sigma}{\partial x}\right)^{2}-\frac{1}{c^{2}}\left(\frac{\partial \sigma}{\partial t}\right)^{2}=0 \tag{7}\\
& \left(\frac{\partial \sigma}{\partial y}\right)^{2}=\sigma^{2} \tag{8}
\end{align*}
$$

Hence

$$
\begin{array}{lr}
\frac{\partial \sigma}{\partial x}=s \frac{1}{c} \frac{\partial \sigma}{\partial t} & s= \pm 1 \\
\frac{\partial \sigma}{\partial y}=s_{1} \sigma & s_{1}= \pm 1 . \tag{10}
\end{array}
$$

The system (9), (10) consists of linear partial differential equations.
Equation (10) gives

$$
\begin{equation*}
\sigma=f(x, t) \mathrm{e}^{s_{1} y} . \tag{11}
\end{equation*}
$$

Substituting (11) into (9) we obtain

$$
\begin{equation*}
\frac{\partial f}{\partial x}=s \frac{1}{c} \frac{\partial f}{\partial t} \tag{12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
f(x, t)=f(x-s c t) \tag{13}
\end{equation*}
$$

Inserting (13) and (11) into (5), we see that (5) is also satisfied.
So for any function $f(x-s c t), s= \pm 1$, the function

$$
\begin{equation*}
\psi(x, y, t)=4 \tan ^{-1}\left[f(x-s c t) \mathrm{e}^{s_{1} y}\right] \tag{14}
\end{equation*}
$$

is a solution of equation (2).
The procedure presented here gives a simple relation between the solutions of the one-dimensional wave equation

$$
\frac{\partial^{2} f}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}=0
$$

having the form of running waves $f(x+c t)$ or $f(x-c t)$ and solutions of the twodimensional sine-Gordon equation (2) having the form (14).

We see from (14) that the amplitude of the solution of (2) is a function of the velocity c, which is a typical soliton property.

We are grateful to B Alexandrov for stimulating discussions.

References

[1] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: SIAM)
[2] Barone A, Esposito F, Magee C J and Scott A C 1971 Riv. Nuovo Cimento 1227
[3] Lamb G L Jr 1980 Elements of Soliton Theory (New York: Wiley)
[4] Bullough R K and Cauderey P J (ed) 1980 Solitons (Berlin: Springer)

